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Investigation of the electric potential near the DNA-solvent interface:
Conclusions about the stability of B-DNA

D. Ouroushev
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In the present paper DNA is treated as a crystal with symmetry corresponding to a double-helix surface
charge density, due to the phosphate groups, immersed in a weak electrolyte. The surrounding solvent is treated
via the nonlinear Poisson-Boltzmann equation and the boundary conditions of electrostatics are exactly ful-
filled on the DNA-solvent interface. Analytical solutions for the electric potentials and fields inside and outside
DNA are obtained. The results give the possibility for a map of the surface potential of DNA to be created.
They also show that the electric field inside DNA may decay in two different ways if we change the chemical
content of the surrounding solvent. According to this we can draw conclusions about the stability of DNA with
respect to the internal and changeable parameters of the system such as chemical content of the aqueous
solvent. The position of the condensed counterions around DNA in the Manning cloud can be determined.
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I. INTRODUCTION

The purpose of this paper is the problem of finding t
electric field emanating from dissolved DNA from both i
side and outside this macromolecule. The correct consi
ation of the field of the surrounding ion atmosphere reve
new properties of this field and helps to predict changes
the structure of DNA due to changes of the internal para
eters of the DNA-solvent system. The creation of a relativ
realistic model of the electric field outside and inside DNA
important for the determination of the influence of this fie
on DNA protein @1# and DNA-DNA interactions@2,3#, for
investigation of the thermodynamic properties of the syst
of DNA and the surrounding solvent, and for attempts
image DNA with scanning force microscopy@4#.

Born, Onsager, and Kirkwood@5–7# have shown that a
molecule in a solvent must be considered as a ‘‘low«’’ cavity
and the surrounding solvent as a media with different«. If
we investigate the electrostatic properties of this system,
boundary conditions for electrostatics on the surface of
biopolymer must be fulfilled.

The next step in developing the main ideas from@5–7# is
to consider DNA as a crystal immersed in an electrolyte a
to take into account the surface charge distribution, wh
has a special concrete form.

In the beginning, DNA was considered to be a homo
neously charged cylinder and the Debye-Huckel theory
the treatment of the solvent was used@8#. After that, the
nonlinear Poisson-Boltzmann equation~NPBE! was consid-
ered for the description of the solvent@9#.

In recent years, the double-helix charge distribution due
the charge of the phosphate groups on the surface of D
was taken into account@10,11#, but the solvent was consid
ered to be a continuous dielectric medium with two differe
«, corresponding to the Manning cloud and to the solv
outside it. The same authors developed their model, using
Debye-Huckel theory@12#. Another approach to the consid
eration of the surface double-helix charge in nonorthogo
coordinates is presented in@13# and discussed in@14#. In @13#
1063-651X/2002/65~3!/031913~8!/$20.00 65 0319
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the solvent was neglected. As is pointed out in@15#, in the
case of DNA and some proteins, such as lypolisine~because
they are highly charged biopolymers!, the NPBE must be
used for the correct description of the solvent.

Here we will consider DNA as a special crystal with co
responding symmetry, taking into account the double-he
surface charge distribution and treating the surrounding
vent via NPBE. We will also use proper nonorthogonal c
ordinates consistent with the internal symmetry of this s
tem.

Our investigations in this direction started with the pap
@16# in which the Laplace equation inside the dielectric c
inder and the NPBE in the solvent outside were solved
the boundary conditions of the electrostatics on the cylind
cal surface were fulfilled. In@16# the surface charge is a
arbitrary function of the polar angleu.

Our next paper@17# applies the mathematical method pr
sented in@16# to the case of B-DNA. In both cases th
method is purely analytical and circumvents the bottlene
problems@18# of the numerical simulations due to the larg
length of the DNA as well as the large amount of solvent t
has to be taken into account.

Here we will develop a model where the helical structu
of the surface charge of DNA will be considered. The gene
mathematical approach for satisfying the boundary con
tions that were developed in@16# will be applied. This will
help to evaluate main ideas from@5–7# and obtain the re-
quired results.

II. SOLUTIONS OF THE NPBE

We will use the nonorthogonal helical coordinates p
sented in@13#, which are a variant similar to the helical co
ordinates from@19#. The coordinates from@13# have the ad-
vantage of being orthogonal on the cylindrical surface w
radiusb, which helps the boundary conditions of electrost
ics to be correctly fulfilled on this surface.

The relations between these coordinates and the cylin
cal ones are given by
©2002 The American Physical Society13-1
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r̄5 r̄,

t̄ 5bu sinb2z cosb,

s̄5bu cosb1z sinb. ~1!

Here b is the radius of the cylinder on which the helic
coordinates are orthogonal andb is the angle of the helix
with pitch r,

tanb5
p

2pb
. ~2!

As is shown in@13#, the Laplacian in the coordinatesr̄,s̄, t̄
has the form

DC5H F1

r̄

]

]r̄
S r̄

]

]r̄
D G1

]2

] t̄ 2
1

]2

] s̄2
1S a2

r̄2
21D

3S sinb
]

] t̄
1cosb

]

] s̄D
2J C. ~3!

In order to solve analytically the NPBE in the solvent arou
DNA and to satisfy the boundary conditions of the elect
statics on its surface, we shall make an assumption. T
assumption simplifies the Laplacian~3! and makes it less
complicated for the corresponding solutions of the NP
around DNA to be found. A reason for this assumption is t
the origin of the electric field inside and outside DNA a
charges distributed on a cylindrical surface on lines witt
2const and displaced at 7.0 Å along these lines. This g
us ground to assume that the electric field is oriented ma
in the t direction near the surface of the DNA. Figure 3 fro
the paper@12# presents the results from the Debye-Huck
treatment, and the good coincidence of the structure of
potential from@12# and that following from our investiga
tions is instructive of the fact that the compromises made
our model are reasonable. The coincidence with our resul
good enough although an all-atom model of DNA is used
paper@12#. According to this, the Laplacian~3! can be re-
written in the form in whichs̄ dependence is disregarded,

DC5H 1

r̄

]

]r̄
S r̄

]

r̄
D 1Fcos2 b1

b2 sin2 b

r̄2 G ]2

] t̄ 2J C. ~4!

Of course, including thes dependence in our investigation
and decomposing the charged lines on the surface of D
into discrete point charges will be one of the next steps in
work.

The experimental and numerical estimations and calc
tions in @10–12# show that the effective decay length for th
helical information in the local electric field is about 20
beyond the surface of the DNA. Our further calculations w
show that the approach presented here is valid in the inte
0<r̄<22.3 Å. In this region the first term in the brackets
front of the derivative]2F/] t̄ 2 in Eq. ~4! or cos2 b can be
neglected with respect to the second one. Having in m
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that the two terms in these brackets are positive and tha
pole exists, this means that we have to slightly change
solution inr̄ direction. The approximation is completely co
rect wherer̄→0 or when we are near the axis of the DNA
In the whole interval of investigation we neglect a sm
constant term in the brackets mentioned above, but we k
the functional dependence ofr̄ in it.

Accordingly, in our model the NPBE has the form

]2C

]r̄2
1

1

r̄

]C

]r̄
1

b2

r̄2
sin2 b

]2C

] t̄ 2
52

4pnN

«
exp~2qC/kT!.

~5!

The dimensionless form is obtained via the transformatio

r5 r̄ f , F̄52
cq

kT
, t5

t̄

b sinb
~6!

or

]2F̄

]r2 1
1

r

]F̄

]r
1

1

r2

]2F̄

]t2 5exp~F̄ !. ~7!

Here f 5@(4pnN/«)L#1/2, whereL5q2/kT is the Bjerrum
length. Alson is a normalization factor defined by

n215E
Vs

expS 2
qC

kT D , ~8!

where theVs is the volume of the solvent under conside
ation andN is the number of counterions with chargeq per
unit axial length. The NPBE can be rewritten in the form

]2F

]x2 1
]2F

]t2 5exp~F!, ~9!

where

x5 ln~r!, F5F̄12x,

t5u2
z

b
cotgb. ~10!

As is shown in our previous paper@16#, using Backlund
transformations and the original idea of Liouville@20#, the
following general solution of Eq.~9! can be found:

F5 lnH 2S ]W~x,t !

]x D 2

12S ]W~x,t !

]t D 2

W2~x,t !
J . ~11!

Here W(x,t) is an arbitrary harmonic function ofx and t.
Consequently for the self-consistent potential, which is a
lution of NPBE, we have

C52
kT

q
H 2FrS ]W~r,t !

]r D 2

12S ]W~r,t !

]t D 2G
r2W2~r,t !

J . ~12!
3-2
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III. FORMULATION OF THE PROBLEM AND BOUNDARY
CONDITIONS

We will look for a solution of the NPBE in the interva
b<r̄<r̄0 . The value ofr0 is determined by the requiremen
of C2 to be normalized in this interval and the electrone
trality condition to be fulfilled in it. Inside DNA we shal
solve the Laplace equation. The solutions of the Lapl
equation inside DNA and the NPBE outside the DNA mu
satisfy the boundary conditions of the electrostatics ar̄
5b,

~DW 22DW 1!• r̄54ps~ t !, r̄5b,

~EW 22EW 1!3 r̄50, r̄5b, ~13!

where« ~r! is

«~r̄ !5«1 , 0<r̄,b,

«~r̄ !5«2 , b<r̄<r̄0 . ~14!

Here r̄ is the outward unit radial vector and the indexes
and 2 refer to the regions inside and outside the cylin
modeling DNA

4ps~ t !5
g

b
@d~ t !1d~ t2t0!#, ~15!

where bothd functions model the double-helix space char
distribution of DNA. The value oft0 is given in@13# and it is

t05p223
1.57

10
3cot~b!. ~16!

In the case of B-DNA the value oft0 can be accepted as45p
with an accuracy of 0.15%. In this case, fors(t) we obtain

s~ t !5
g

bp F (
m51

`

cos~5mt!1
1

2G . ~17!

Hereg is the linear charge density on the two helical line

IV. CALCULATION OF THE ELECTRIC POTENTIAL AND
FIELD AND THE SPACE CHARGE DISTRIBUTION

OF THE IONS IN THE SOLVENT

Having in mind that we have to match on the bounda
surface, the solution of the Laplace equation and the solu
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of the NPBE containing an arbitrary harmonic function ofx
and t we make the following substitution, which solves th
Laplace equation inside the cylinder:

C15 (
m51

`

Ā5m
1 S r̄

bD 5m

cos~5mt!. ~18!

For the functionW(x,t) in Eq. ~12! we set

W~x,t !5C ln~r1r!1S Ā

r5 1B̄r5D cos~5t !, x5 ln r.

~19!

The form of s(t), Eq. ~17!, determines the exponents 5
the exponential functions inC1 and W(x,t). Only if we
choose the exponents equal to 5, the analytical solution
the problem can be found. This is an important feature of
presented model and consequences of it will be shown
low.

In Eqs.~18! and~19! Ā5m8 , C, Ā, B̄, andr1 are arbitrary
coefficients. For these expansion coefficients inC1 andC2 ,
we have a nonlinear system of algebraic equations. The
tem and its solutions are given in the Appendix. Using e
pressions~18! and~19! and the boundary conditions~13!, we
obtain the following expressions for the potentialsC1 and
C2 inside and outside the DNA:

C15 (
m51

`

Ā5m
1 r 5m cosF5mS u2

2z

b D G , ~20!

A5
152

4«2~C/B1a11!

5«1~a11!
,

A10
1 512

4«2~C/B1a11!

5«1~a11!
,

where

5~m11!A5~m11!8 5 1
2 @5mA5m

1 15~m12!A5~m12!8 #,

m51,2,3,..., ~21!
C252
kT

q
lnH 50

H C

5
1S r 52

a

r 5D cosF5S u2
2z

b D G J 2

1H S a

r 51r 5D sinF5S u2
2z

b D G J 2

H 2~11a!1C ln r 1S a

r 5 1r 5D cosF5S u2
2z

b D G J b2r 2

r D
2

J . ~22!
3-3
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In Eqs.~22! and ~20! r 5 r̄/b and r D is the Debye radius. Also

a5
8«225«1

12«215«1
. ~23!

From Eq.~22! for the space charge density of the counterionsrc we have

rc550H H C

5
1S r 52

a

r 5D cosF5Su2
2z

b DGJ2

1HSa

r51r5DsinF5Su2
2z

b DGJ2

H2~11a!1C ln r1Sa

r51r5DcosF5Su2
2z

b DGJ2 4pqb2r2

«2kT

J . ~24!

We will obtain the components of the electric fieldEr , Eu , and Ez in cylindrical coordinates using the relationEW

52gradC and following@13#. From Eqs.~20! and~22! using expression~17! for the components of the fieldEr
2, Eu

2, andEz
2

outside DNA we have

Er̄
25

kT

bqH 10H C

5r
1S r 42

a

r 6D cosF5S u2
2z

b D G J
H C ln r 2~11a!1S a

r 5 1r 5D cosF5S u2
2z

b D G J 2
2

r J , ~25!

Eu
25210

kT

bq

1

r 2 H S a

r 5 1r 5D sinF5S u2
2z

b D G
C ln r 2~11a!1S a

r 5 1r 5D cosF5S u2
2z

b D GJ , ~26!

Ez
2510

kT

bq

cosb

sinb

1

r 4 H S a

r 5 1r 5D sinF5S u2
2z

b D G
C ln r 2~a11!1S a

r 5 1r 5D cosF5S u2
2z

b D GJ . ~27!
eu
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The normalization of the NPBE solution and the electron
trality condition demand

gL5E
Vs

qnNexpS 2
c2q

kT Ddn. ~28!

HereL is the length of the helical line per pitch andVs is the
regarded volume of the solvent

Vs5p~r02b!2z0 , ~29!

wherez0531.56 Å.
Finally we obtained a family of solutions of the electr

potentials depending on the arbitrary constantC. The value
of C may be determined by a investigation of the free ene
of the system. As can be seen from the expression for
space charge density of the solvent~24!, by changingC we
compress the counterions closer to the DNA macromolec
03191
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This exact analysis and the determination of the conc
solutions corresponding to the reality will be subject of o
future work.

The result from the Appendix gives the components of
electric field inside DNA,

Er̄
152

kT

qb (
m51

`

5mA5m
1 r 5m21 cosF5mS u2

2z

b D G , ~30!

Eu
15

kT

qb

1

r 2 (
m51

`

5mA5m
1 r 5m sinF5mS u2

2z

b D G , ~31!

Ez
152

kT

qb

1

r 4

cosb

sinb (
m51

`

5mA5m
1 r 5m sinF5mS u2

2z

b D G .
~32!

These results show that to obtain a realistic picture of
electric field inside B-DNA (0<r<1) it is enough to con-
sider just the first terms in the rows in Eqs.~30!–~32!. Keep-
3-4
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FIG. 1. The components of the electric field inside B-DNA.~a! Er̄
1,Eu

1,Ez
1 in the case of B-DNA as a function ofu and r, «152.4, «2

559.4,T5310 K, C510, b510 Å, z50. In this case the counterions are distributed at larger distances from DNA and larger variati
the electric field occur inside it. In this case the value ofC is larger than in case~b!. ~b! Er̄

1,Eu
1,Ez

1 in the case of B-DNA as a function o
u andr, «152.4,«2559.4,T5310 K, C5212a, b510 Å, z50. This is a case of an almost complete shielding of B-DNA. The phys
reason for this effect is the space distribution of the counterions near the surface of B-DNA at smaller value ofC (212a;25/4). The
electric field inside the macromolecule is partially compensated by the field due to the counterions.
031913-5
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D. OUROUSHEV PHYSICAL REVIEW E 65 031913
ing just the first term in the rows, in Fig. 1 are presentedEr̄
1,

Eu
1, and Ez

1 for two values ofC. The value ofEz
1 is the

largest, which is in agreement with the experimental d
@10,14#.

This is an interesting result giving simple expressions
the electric field inside B-DNA and revealing possibilities
changes in its proteins being easily predicted. The form
for Am

1 shows thatĒ1 depends on«2 or the value of the
electric field inside DNA and its decay can be influenced
the value of«2 or the type of conterions and their conce
trations in the solvent.

V. THE VOLUME OF THE MANNING CLOUD

The componentEr̄
2 of the electric field derived by us~the

cylindrical coordinates! has the form~26!. b is the radius of
the cylinder,C is an arbitrary constant, and fora we have the
expression

a5
8«225«1

12«215«1
. ~33!

In Eq. ~33! «1 and«2 are the dielectric constants inside DN
and in the aqueous solvent. In the intervals 1,r ,2.23 and
250,C,50 the following inequality is fulfilled:

2~11a!1C ln r ,a/r 51r 5. ~34!

In these intervals forr and C there exists a cylinder with
radiusr 0 inside which the electroneutrality condition is fu
filled. Using Eq. ~1! and the Gauss theorem we obtain
equation for the radius of the Manning cloud. The improp
integral, which must be evaluated in order to apply the Ga
theorem, considering Eq.~34!, possesses a finite main valu
@21#, and the following equation for the radiusr 0 is obtained:

a/r 0
62r 0

4

a/r 0
52r 0

5 5
2

r 0
. ~35!

From Eq.~35! for the radius of the above-mentioned cyli
der, we obtainr 052.23, or the radius of the Manning clou
is 22.3 A. This result in the frames of our ‘‘shell mode
coincide well with the experimental data for the radius of t
Manning cloud@8,9#.

VI. POSITION OF THE COUNTERIONS IN THE
MANNING CLOUD

The above-mentioned radial position will be determin
from the expression for the space charge density given
Eq. ~24!. In Eq. ~24! the denominator is zero where

2~11a!1C ln r 1S a

r 5 1r 5D cosF5S q22
z

bD G50.

~36!

It must be underlined that the improper integral fromrc over
the volume of the cylinder with radiusr 0 is finite @21#. As is
shown in our article@22#, on the singular surfaces dete
mined by the condition~36! we have particle condensation
03191
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The expressions for the electric field inside B-DNA ha
the forms~30!–~32!. For the coefficientA5

1 we have

A5
152

kT4«2~C1a11!

q5«1~a11!
. ~37!

It is clear that ifC52(11a), A5
1 is zero. Consequently the

largest component of the electric fieldEz
1 in this case decays

inside DNA proportional tor (0,r ,1). The fact thatEz
1 is

the largest component of the electric field follows from t
structure of the surface charge of DNA as was pointed ou
@14#. For all values ofC different from2(11a), Ez

1 decays
as r 6. This means that we have two different states of
system of DNA and the surrounding aqueous solvent.
may have an electric field inside DNA that may change
structure or one that cannot influence it. Keeping in mind
expression~24! for the space charge density of the counte
ons and the fact that in the denominator of this expression
have the termC ln r, conclusions about the space distributio
of these ions can be made. At larger values of the free c
stantC, the denominator in Eq.~24! is larger than whenr
tends to 1, and the counterions are located further from
surface of B-DNA ~r 51 corresponds to the surface o
DNA!. For small values ofC we compress the counterions
the surface of B-DNA. The charges closely distributed to
surface compensate to a certain extent for the electric fi
inside the macromolecule, and it is electrically shielded.
the other case of larger values ofC, we have larger variations
of the electric field inside B-DNA due to the location of th
counterions at larger distances from it.«2 depends on the
chemical content of the solvent. Decreasing«2 we increase
the electric field produced by the surface charge of DN
inside the solvent. This means compression of the coun
ons to the surface DNA, materialization of a solution wi
smallerC, and decreasing of the electric field inside the ma
romolecule. All this coincides with the speculations pr
sented above.

A detailed explanation of the ‘‘two ways of decay’’ of th
electric field inside DNA can be performed by investigati
of the free energy of the DNA-solvent system. This energy
a function ofC and «2 and such a study is one of the pu
poses of our future work.

VIII. CONCLUDING REMARKS

It must be underlined that the singularities inrc might be
interpreted as Manning’s condensation of counterions. T
point here is that the radial position of the condensed cha
is determined. The exact value of this charge and its in
ence on the electric field of the DNA-solvent system will
the subject of our future work.

The approach in this paper is completely analytical a
the obtained formulas for the electric field inside and outs
DNA reveal clear possibilities of influencing its structure a
properties. This can be done by changing the chemical c
tent of the surrounding aqueous solvent. It is shown t
DNA and the surrounding solvent is a two level system a
that in one of its states the DNA macromolecule is alm
electrostatically shielded. Of course this might be import
3-6
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for the protection of DNA from external electromagnetic i
fluences. This fact is mainly due to the position of the ph
phate groups on the surface of the DNA and may be achie
by changing in a proper way the content of the surround
aqueous solvent as is shown in this paper. On the base o
obtained results, also a map of the electric field inside D
might be created.

APPENDIX

We introduce the relations

Ām
1 5

kT

q
Am

1 , ~A1!

Ā

~b f !5 5A, B̄~b f !55B. ~A2!

From the boundary conditions~13! and the expressions fo
C1 andC2 we will obtain the following system of nonlinea
algebraic equations for the expansion coefficients inC1 and
C2 . In the following formulas the expression~17! for s(t)
is used. So we have

A1
1A0

213A6
1A5

222A4
1A5

250, ~A3!

2A2
1A0

21 7
2 A7

1A5
22 3

2 A3
1A5

250, ~A4!

3A3
1A0

214A8
1A5

22A2
1A5

250, ~A5!

4A4
1A0

21 9
2 A9

1A5
22 1

2 A1
1A5

250, ~A6!

A5
1A0

21A10
1 A5

25A5
2, ~A7!

«1@A1
1A0

113A6
1A5

212A4
1A5

2#5
g

pb
@A0

21A5
2#, ~A8!

«1@2A2
1A0

21 7
2 A7

1A5
21 3

2 A3
1A5

2#5
g

pb
@A0

21A5
2#, ~A9!

«1@3A3
1A0

214A8
1A5

21A2
1A5

2#5
g

pb
@A0

21A5
8#, ~A10!
l.

ys

c
.
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«1@4A4
1A0

21 9
2 A9

1A5
21 1

2 A1
1A5

2#5
g

pb
@A0

21A5
2#, ~A11!

5~m11!A5~m11!8 5 1
2 @5mA5m

1 15~m12!A5~m12!8 #,

m51,2,..., ~A12!

5«1@A5
1A0

21A10
1 A5

2#2«2@212A18B#5
gp

b
@A0

21A5
2#,

~A13!

«1
5
2 A5

1A5
212«2@C2C ln r1b#5

gp

b
@A0

21A5
2#,

~A14!

5~m11!A5~m17!8 2 1
2 @5mA5m

1 15~m12!A5~m12!8 #

5
g

2pb
@A0

21A5
2#, m51,2,... . ~A15!

The system of equations~A3!–~A15! has the nontrivial so-
lution

A5m11
1 5A5m22

1 5A5m13
1 5A5m14

1 50 m50,1,2,3...,
~A16!

A5
152

4«2~C/B1a11!

5«1~a11!
, ~A17!

A10
1 512

4«2~C/B1a11!

5«1~a11!
, ~A18!

A

B
5a5

8«225«1

12«215«1
, ~A19!

5~m11!A5~m11!8 5 1
2 @5mA5m

1 15~m12!A5~m22!8 #

m51,2,3,.... ~A20!

Here B is an arbitrary constant of which the solutions a
independent.
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